10/12/2025 07:44 Untitled-1
Untitled-1

using System;

using System.Collections.Generic;
using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Ling;

using System.Runtime.Intrinsics.Arm;
using System.Text;

O 00 N O U1 A W N PR

using System.Threading.Tasks;

10 using System.Windows.Forms;

11

12 namespace AP8_PROGRAMME_VALLEE_ESTEBAN

13| {

14 public partial class resultatIPB : Form

15 {

16 public resultatIPB()

17 {

18 InitializeComponent();

19 }

20

21 private void resultatIPB_Load(object sender, EventArgs e)

22 {

23 TB_IPSHOW.Text = Global.IPV4.ToString(); // Mise de valeurs dans les textboxs

24 TB_CIDRSHOW.Text = Global.CIDR.ToString();

25 TB_IPBINAIRE.Text = Global.IPV4binaire;

26 TB_MASQUE.Text = "non traitée";

27 if (Global.CIDRBINAIRE == null) //mise en valeur conditionnée (seulement si une
valeur a été calculée)

28 {

29 TB_CIDRDECIMALE.Text = "non traitée";

30 }

31 else

32 {

33 TB_CIDRDECIMALE.Text = Global.CIDRBINAIRE;

34 }

35

36 if (Global.CIDRMASQUE == null)

37 {

38 TB_MASQUE.Text = "non traitée";

39 }

40 else

41 {

42 TB_MASQUE.Text = Global.CIDRMASQUE;

43 }

44

45 if (Global.CLASSIP is null)

46 {

47 TB_CLASSE.Text = "non traité";

48 }

49

50 else

51 {

localhost:63414/f8c77bcb-b4fd-467a-9e3¢-9189395d9914/ 1/4



10/12/2025 07:44 Untitled-1

52 TB_CLASSE.Text = Global.CLASSIP;

53 }

54

55 if (Global.nbrhotes == @)

56 {

57 TB_Hotes.Text = "non traité";

58 }

59

60 else

61 {

62 TB_Hotes.Text = Global.nbrhotes.ToString();

63 }

64

65 if (Global.nbsousres == 0)

66 {

67 TB_NBRreseaux.Text = "non traité";

68 }

69

70 else

71 {

72 TB_NBRreseaux.Text = Global.nbsousres.ToString();

73 }

74 }

75

76 private void BTN_TRAITEMENT_Click(object sender, EventArgs e)

77 { ///Vérifier au chargement si des données ne sont pas déja disponibles

78 MessageBox.Show("L'IP et le masque ont étés traités avec succés !"); //démarrage du
traitement

79 int cidr = Global.CIDR;

80 string bits = new string('1l', cidr).PadRight(32, '@");

81 string CIDRBINAIRE = //Décomposition du CIDR binaire en 4 parties séparés d'un
point

82 bits.Substring(@, 8) + "." +

83 bits.Substring(8, 8) + "." +

84 bits.Substring(16, 8) + "." +

85 bits.Substring(24, 8);

86 Global.CIDRBINAIRE = CIDRBINAIRE; //Enregistrement de la variable en global

87 TB_CIDRDECIMALE.Text = Global.CIDRBINAIRE;

88

89 String[] CIDRBINAIRETRAITEMENT = CIDRBINAIRE.Split("."); //Conversion du CIDR en
binaire en Masque entier

90 Int16 cl = Convert.ToByte(CIDRBINAIRETRAITEMENT[@], 2); //Traitement des parties
une a une pour exclure les points

91 Intl6 c2 = Convert.ToByte(CIDRBINAIRETRAITEMENT[1], 2);

92 Intl6 c3 = Convert.ToByte(CIDRBINAIRETRAITEMENT[2], 2);

93 Intl6 c4 = Convert.ToByte(CIDRBINAIRETRAITEMENT[3], 2);

94 Global.CIDRMASQUE = c1 + "." + c2 + "." + c3 + "." + c4; //Enregistrement de la
réponse dans un string

95 TB_MASQUE.Text = Global.CIDRMASQUE;

96 if (Global.IPnbl <= 127 && Global.IPnbl >= @) // On donne les classes des IPs,
selon les plages connues.

97 {

98 Global.CLASSIP = "A";

99 }

localhost:63414/f8c77bcb-b4fd-467a-9e3¢-9189395d9914/ 2/4



10/12/2025 07:44
100
lol
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Untitled-1

else if (Global.IPnbl <= 191 && Global.IPnbl >= 128)
{

Global.CLASSIP = "B";
}
else if (Global.IPnbl <= 223 && Global.IPnbl >= 192)
{

Global.CLASSIP = "C";
}
else if (Global.IPnbl <= 239 && Global.IPnbl >= 224)
{

Global.CLASSIP = "D";
by
else
{

Global.CLASSIP = "E";
}

TB_CLASSE.Text = Global.CLASSIP;

///Calcul du nombre d'hotes (on compte le nombre de zéro dans le masque)

int nbrzero = 0;

for (int i = @; i < Global.CIDRBINAIRE.Length; i++) //On va compter avec un index

le nombre de zero

121
122
123
124
125
126
127

{
if (Global.CIDRBINAIRE[i] == '@")
{
nbrzero = nbrzero + 1; //Compteur
}
}

Global.nbrhotes

2 (broadcast et adresse réseau)

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

TB_Hotes.Text = Global.nbrhotes.ToString(); //Affichage sur TB

111771777177717771111171117711777

//Determination Classe Réseaux//

I117717771177177711111111777117177

Intl6 cidrplage = 9;

if (Global.CIDR>=8 && Global.CIDR<16) //On vérifie que le CIDR commence par 255

{
Global.CLASSCIDR = "A";
cidrplage = 8;
}
else if (Global.CIDR >= 16 && Global.CIDR < 24) //On vérifie 255.255
{
Global.CLASSCIDR = "B";
cidrplage = 16;
}
else if (Global.CIDR >=24 && Global.CIDR < 32) //On vérifie 255.255.255
{
Global.CLASSCIDR = "C";
cidrplage = 24;
}
else

localhost:63414/f8c77bcb-b4fd-467a-9e3¢-9189395d9914/

((int)Math.Pow(2, nbrzero) - 2); // 2 puissance nombre de zéro -

3/4



10/12/2025 07:44 Untitled-1

152 {

153 Global.CLASSCIDR = "D/E"; //@ sous réseaux pour ceux-ci

154 cidrplage = 32;

155 }

156

157 Global.nbsousres = (int)Math.Pow(2, Global.CIDR-cidrplage); // 2 puissance nombre
de 1 rajoutés entre cidr et plages de masques habituelles.

158 TB_NBRreseaux.Text = Global.nbsousres.ToString(); //on met la valeur dans le
tableau

159 }

160

161 private void BTN_RETOUR_Click(object sender, EventArgs e)

162 {

163 Forml pagel = new Forml(); //Ouverture d'une page, fermeture d'une autre
164 this.Close();

165 pagel.Show();

166 }

167

168 private void TB_QUITTER_Click(object sender, EventArgs e)

169 {

170 this.Close();

171 }

172

173 private void BTN_CLCNBRRESEAUX_Click(object sender, EventArgs e)
174 {

175

176 }

177 }

178 }

localhost:63414/f8c77bcb-b4fd-467a-9e3¢-9189395d9914/ 4/4



